a^2+a^2=56.25

Simple and best practice solution for a^2+a^2=56.25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a^2+a^2=56.25 equation:



a^2+a^2=56.25
We move all terms to the left:
a^2+a^2-(56.25)=0
We add all the numbers together, and all the variables
2a^2-56.25=0
a = 2; b = 0; c = -56.25;
Δ = b2-4ac
Δ = 02-4·2·(-56.25)
Δ = 450
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{450}=\sqrt{225*2}=\sqrt{225}*\sqrt{2}=15\sqrt{2}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-15\sqrt{2}}{2*2}=\frac{0-15\sqrt{2}}{4} =-\frac{15\sqrt{2}}{4} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+15\sqrt{2}}{2*2}=\frac{0+15\sqrt{2}}{4} =\frac{15\sqrt{2}}{4} $

See similar equations:

| 2x=180°-55° | | 2x=180°-55 | | 3+5y=14+3y | | 10/x+8=-2 | | 27=13x | | 5w+13=w-19 | | 6q+4=70 | | b-9=-1 | | t-12=1 | | 4r+11=27 | | 5(f-1)+1=(2F+1) | | 5z+5=35 | | 16-5u=2u-19 | | 5(u-2)-1=3(u+1)+4 | | 5x-1/5=94/5 | | 10x–3=8x+27 | | 6v+11=71 | | 8x-3=x+6 | | 9x-12/3=2x | | 1/3(3/4n-15)=1 | | 0.4(2n+3)=13.2 | | 8f-15=f+13 | | 5x+4=(3x-3)x= | | a+7=11.5 | | 6+8=n+7 | | 4+3=x3-1 | | 1/6x+1+4/5x=x | | x/10+3=20 | | 3t+9=7t-3 | | 4x/7-8=1 | | 42y+3=7 | | 2f+8=3f+5 |

Equations solver categories